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INTRODUCTION 

NATURAL CONVECTION in horizontal enclosures with heating 
from below has been the subject of many numerical studies 
in recent years. However, little attention has been paid to 
fluids having very low Prandtl numbers, such as liquid metals 
[1-4]. McDonough and Catton [1] studied natural con- 
vection using a mixed finite difference-Galerkin procedure 
in a horizontal square box which was heated from below and 
cooled from above, with the side walls insulated. They found 
that the numerical results with lower Pr did not converge as 
quickly as those with higher Pr, and that the convergence 
was not monotonic. They believed that this was due to the 
increasing nonlinearity as the Prandtl number decreased. In 
the numerical results presented in ref. [1], the Prandtl num- 
bers were not lower than Pr ffi 0.71. Obviously, further 
numerical studies in the low Prandtl number range are 
needed, which is one of the objectives of this paper. 

For pool boiling and two-phase flow heat transfer, the 
temperature distribution in liquid metals is crucial to the 
operation and boiling incipience. In a gravitational environ- 
ment. heat transfer in liquid metals prior to boiling incipience 
is a problem of natural convection combined with conduc- 
tion, even for liquid metal layers with a thickness of the 
order of l0 ram. Because of the limitations of experiments, a 
numerical study is needed to obtain temperature dis- 
tributions prior to boiling and to study mechanisms of boil- 
ing incipience on the wall for very low Prandtl numbers. This 
is another motivation of the present numerical study. 

Many pool boiling and evaporation test sections for liquid 
metal layers can be modeled as a two-dimensional partial 
heating configuration as shown in Fig. 1, with the dimension 
perpendicular to the paper being infinitely long. A uniform 
heat flux along the heating element is specified. The upper 
liquid surface is kept at the saturation temperature T, ffi T~, 
corresponding to the system pressure, and is considered as a 
free surface in contrast with the rigid lower surface. The 
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FIG. I. Two.dimensional honzontal liquid metal layer with 
localized heating from below. 

container wall, except the heating element, is insulated to 
prevent heat loss to the environment. Another alternative 
boundary condition for this problem is to specify a constant 
temperature Th > T, at the lower surface, which has been 
used more often in the previous numerical studies. 

In this paper, the natural convection of fluids having very 
low Prandtl numbers down to Pr ffi 0.00125 in enclosures 
with partial or full heating from below will be studied numeri- 
cally, and the numerical results will be compared with the 
existing experimental data [5] and the empirical heat transfer 
equation [2], respectively. 

FORMULATION AND NUMERICAL METHOD 

The dimensionless governing equations for steady two- 
dimensional laminar flow of a Newtonian fluid ~ith no dis- 
sipation under the Boussinesq approximation can be written 
as follows: 

~U OV 
~ + ~ - 9 = 0  (l) 

O(U 2) +~(UV) OP {02U O:U~ 
= -- 0"-~ + Pr ~-~-XT + -~-~} (2) 0X Y 

O(UV) O(v 2) oe (02v ~:v'~ 
OX + ~ = OY FRa~ - -  PrO+Pr~-ff-~+-~.) (3) 

O(UO) O(VO) 0~0 020 
0--~ + ~ = ~ + O y2 (4) 

with the following dimensionless variables : 

X X f f i f i ;  Y f f i Y ;  u f u H ;  v f v H ;  O f  T-T~"  
O[ O[ T c " 

P ffi(p+pogy)HZ/p~; Prffiv/ct; Rat ffig~H;Tc/,,v 

where 

1 
ffi -- "~o ( p -  po)/( T - To). 

For the partial heating from below, two geometrical par- 
ameters are needed: B~ = W/H and B2 = L/H. 

The boundary conditions for the constant heat flux and 
free upper surface shown in Fig. 1 are 

OU 
V = 0 , ~ ' ; . . - 0 , 0 = 0  Y = l ,  -BI<~X<~BI (5a) 

( 7 /  

O0 
V=U=O,~-x=O 0~<Y~<I, Xf f i - -B I  (5b) 

O0 
V=U=O,~-x=O 0~<Y~<l, X=BI .  (5c) 

For the rigid lower boundary condition (Y ffi 0) 

V f U = 0  -Bj<~X<~BI (5d) 
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NOMENCLATURE 

B, W/H 
B= L/H 
g gravitational acceleration [m s-  2] 
H height of thermal cavities or height of the liquid 

level [In] 
k thermal conductivity [W m-  i °C- i] 
L half width of the heating element [In] 
Nu Nusselt number, qH/k(Th- T~) 
p pressure IN m-~  
P (p+pogy)H2/p~ z 
Pr Prandti number 
q heat flux [W m -  z] 
Ra Rayleigh number, gllH3(Th- T~)/v= 
Raz Rayleigh number, g[JH3TJvct 
T temperature [°C] 
To reference temperature [°C] 
7", saturation temperature [°C] 
Ts hot surface temperature [°C] 

T~ cold surface temperature [°C] 
7", temperature of heating surface in the case of the 

constant heat flux [°C] 
U, V dimensionless velocities, uH/~, vH/# 
u, v velocities [m s- '] 
W width of the thermal cavity [In] 
X, Y dimensionless coordinate directions, x/H, y/tt 
x, y coordinate directions. 

Greek symbols 
thermal diffusivity [m 2 s-  '] 

,8 coefficient of volumetric thermal expansion 
[°c ] 

0 dimensionless temperature, ( T -  Tc)/(Th- T~) or 
(T- T¢)/T© 

v kinematic viscosity [m 2 s- '] 
p density [kg m- ~] 
Po reference density [kg m- 3]. 

O0 qH 

~e 
-~y-O - B j ~ X < - B ~  and B ~ < X < B j .  (50 

For the case of a constant temperature Th at the lower 
surface, the dimensionless numbers 0 and Ra, need to be 
changed to 

0= T-To and Ra=g/$S3(Th-Tc)/~v. (5g) 
T~- To 

The corresponding boundary condition (5e) is replaced by 

0=I -B2<X<Bz. (Sh) 

The problem is specified mathematically by equations (I)- 
(5). The solution procedure used for solving these equations 
is the finite-difference method SIMPLER, which has been 
described in detail by Patankar [6, 7]. The power-law scheme 
is used for the convection-diffusion terms and the dis- 
cretization equations are solved by using the tridiagonal 
matrix algorithm (TDMA or Thomas algorithm). Under- 
relaxation parameters are used to control the advancement 
of the solutions and to ensure convergence. The computer 
program was tested with different grid sizes for the same 
problem, and the solutions proved to be essentially inde- 
pendent of the grid size. 

RESULTS AND DISCUSSION 

1. Partial heating with constant heat flux 
The numerical calculations were conducted with the con- 

figuration in Fig. i, and the results of the temperature dis- 
tribution at x = 0 were compared with the experimental data 
from Takenaka et al. [5]. The experiment was made with a 
horizontal potassium layer heated from below. The test vessel 
had a rectangular cross-section of 140 × 96 nun 2. The effec- 
tive heating area in the center of the vessel is I00 × 20 mm'. 
The vertical liquid temperature distribution was measured 
by sliding thermocouples along the central line of the vessel. 
Since the length of the heating element is much larger than its 
width, the heat transfer can be modeled as two-dimensional 
natural convection within the configuration as shown in 
Fig. I, with B t = l . 7 0 ,  B 2=0.360, q - 1 0  s W m -~ and 
Tc = T, = 527°C. The reference temperature To is chosen as 
7", and the relevant properties can be found from ref. [8], 
thus giving Pr = 0.004 and Rat = 3.0 x 106. Figure 2 shows 
the comparison of the numerical temperature distribution at 

x = 0 and the experimental data of H -- 28 nun from ref. [51. 
It can be seen that the agreement is generally good and is 
excellent near the lower surface. The grid size used in the 
numerical calculation was 33 x 20. The temperature dis- 
tribution consists of the boundary region near the heating 
surface and the hulk region. The boundary thickness is rela- 
tively larger compared with those of o~-dinary fluids. Figure 
3 shows the corresponding temperature contours and dimen- 
sionless stream function contours. Because of the symmetry, 
only the solutions for the half cavity were presented in the 
figure. The isotherms and streamlines indicate that a plume- 
like flow is generated above the heated region, which is the 
normal case for natural convection in a liquid heated from 
below with a rigid or free upper surface [9, 10]. 

Figure 4 shows the temperature distributions for sodium 
with different values of the heat flux q. Since the temperature 
of the upper free surface is fixed at T,, higher values of the 
heat flux result in a higher 7",. For example, the 7", of the 
case with q - 30 W cm- ' ,  is almost 50°C higher than that 
of the case with q = 5 W cm -2. Also, for the low heat flux 
the temperature field shifts towards the conduction regime 
with an almost linear temperature distrihution. 

In the numerical calculations, it was found that the con- 
vergence speed is much slower with lower values of the 
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FIG. 2. Comparison between the numerical solution and the 
experimental data. 
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FiG. 3. Temperature and stream function contours for the half cavity. 

Prandtl number, as indicated in refs. [1, l l]. Considering this 
fact, the calculations proceeded from higher to lower Prandtl 
numbers with the solutions of the higher Pr as the starting 
values for the lower Pr. Also, under-relaxation was needed 
to ensure convergent solutions. The under-relaxation par- 
ameter used in the above calculations was 0.1. 

2. Natural convection in a horizontal rigid cavity with specified 
boundary temperature 

The problem of natural convection in a rigid cavity with 
specified boundary temperatures will now be examined. The 
boundary conditions with reference to Fig. 1 in this case are 
changed to the following: 

V = U = O , O = O  

V = U = 0 ,  O = I  

~0 0 v=u=o,~= 

~e v=u=o,~=o 

The dimensionless temperature and Rayleigh numbers are 
O ffi ( T -  Tc)I(Th- TO and Ra = g/3H~(Th - T,)/~v, respec- 
tively. 

Raithby and Hollands [2] have proposed an empirical 

Y = I ,  - B i  ( X g B  = 

Y = 0 ,  - B I  ~<X(B= 

0 < ~ Y < I ,  X = - B I  

0 < ~ Y < I ,  X = B I .  

30 

25 / /ii ./"-- , [ '~ , 

I i i  /o::::=:. 
I i i + . . . , ~ . - t  

"~ I t  l - x . . ~ w . "  
,g is  I I i i ~=o.oo~ 

" ,o- / i/../ I / / !  
s i / . i  i "  / .~28.11Wl"t / . i ; . . ." . / -  

~ . ~ . f t - -  T, : 527. 
0 I I i 

o ;o 20 ~o A ~o so 
T,,-T 

FiG 4 Temperature distributions for different heat flux q 

equation for the natural convection heat transfer in hori- 
zontal cavities nonextensive in the horizontal direction, 
which is 

Nu = 1 +[1 -- RaJ  Ra]*[k ; + 2( Ra'/ ~ /k 2) I-1"(~"3/k:l] 

/ - / R a  ~/3 -I* +Lt J -'J ( l -exp{-0.95[ (Ra/Ra~)" ' - l ] * )> 

(6) 

where Ra~ is the critical layleigh number, and k, and k2 are 
both functions of  Pr, given as follows: 

ki  = 1.441(l +O.Olg/Pr +O.OO136/Pr 2) (7) 

k 2 ---- 75 exp (1.5 Pr-  i/i). (8) 

The square brackets with the asterisk, []*, indicate that only 
positive values of the argument are to be taken, i.e. 

[Xl* -- (1%1 + X)/2. (9) 

The above equation has been tested against experimental 
data for gases and liquids of various Prandtl numbers except 
liquid metals, with a maximum difference of 25%. 

It is of interest to compare the present numerical solutions 
with equation (6) and to fill the gap in the low Prandtl 
number range. The calculations were carried out with 
Bs = 0.5 (i.e. a square box) and the results are presented in 
Fig. 5. It can be seen that the agreement between the numeri- 
cal solutions and equation (6) is generally good. The 
maximum difference within the range of comparison is less 
than 20%. A grid size of 25 x 25 was used in the numerical 
calculations, and the solutions were obtained from higher to 
lower Pr with the solutions of the higher Pr as the initial 
guesses for the lower Pr. The  number of iterations for con- 
vergence ranged from 700 to 1000. 

CONCLUSIONS 

A numerical study has been reported for natural con- 
vection in horizontal liquid metal layers with localized heat- 
ing from below. The temperature distribution of the numeri- 
cal results at x ffi 0 agrees well with the corresponding 
experimental data for a potassium layer. The isotherms and 
streamfines indicate that a plume-like flow is generated above 
the heated region. The numerical results based on a rigid 
square box with insulated side walls, Th on the bottom and 
T, on the top, generally agree with equation (6) of ref. [2], 
within the Rayleigh number range of 5 x 103-105, and the 
Prandtl number range of 0.00125-0.01. 
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FIG. 5. Comparison of equation (6) and the present numerical solutions. 
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INTRODUCTION 

N ~ o u s  research articles have appeared in the literature 
in recent years in the area of convective heat transfer in 
fluid-saturated porous materials. The great majority of these 

articles deal with problems in natural convection or forced 
convection. The area of mixed convection, which constitutes 
the interface between natural and forced convection in 
porous media, has been, by comparison, largely overlooked. 

One of the early investigations ofcombined free and forced 


